Direkt zum Inhalt

Kölbel, L., Herrmann, L., Kölbel, T., Schneider, J., 2024. Lithium extraction from geothermal brines: Adsorption-desorption studies on 226Ra (228Ra) and 210Pb on lithium-titanium-oxides (LTO), Applied Geochemistry,162, 105913, https://doi.org/10.1016/j.apgeochem.2024.105913.

Kölbel, L., Slunitschek, K., Kaymakci, E., Kölbel, T., Reich, R., Schneider, J., 2024. Lithium recovery from geothermal brines: An investigation into radioactive nuclide uptake on lithiummanganese-oxide (LMO) granules, Hydrometallurgy, 224, 106266, https://doi.org/10.1016/j.hydromet.2024.106266.

Kölbel, L., Kölbel, T., Herrmann, L., Kaymakci, E., Ghergut, I., Poirel, A., Schneider, J., 2023. Lithium extraction from geothermal brines in the Upper Rhine Graben: A case study of potential and current state of the art, Hydrometallurgy, 221,106131, https://doi.org/10.1016/j.hydromet.2023.106131.

Kölbel, L., Kölbel, T., Fechner, D., 2022. Radiochemical monitoring of geothermal systems: Case study Bruchsal (Upper Rhine Graben), Applied Geochemistry, Volume 147, 2022,105509, https://doi.org/10.1016/j.apgeochem.2022.105509.

Herrmann, L., Ehrenberg, H.,  Graczyk-Zajac, M., Kaymakci, E., Kölbel, T., Kölbel, L., Tübke, J., 2022. Lithium recovery from geothermal brine – an investigation into the desorption of lithium ions using manganese oxide adsorbents. Energy Adv., 2022.

Kölbel, L., Ghergut, I., Sauter, M., Kölbel, T., Wiegand, B., 2021. Integrated approach into the characterization of the fracture network of a geothermal reservoir. Applied Geochemistry, 129, 104967.

Kölbel, L., Kölbel, T., Maier, U., Sauter, M., Schäfer, T., Wiegand, B., 2020. Water-rock interactions in the Bruchsal geothermal system by U-Th series nuclides. Geothermal Energy, 8:24.

Kölbel, L., Kölbel, T., Wiegand, B., Sauter, M., Schäfer, T., Siefert, D., 2020. Identification of fractured zones in geothermal reservoirs in sedimentary basins: A radionuclide-based approach. Geothermics 85, 101764.

Eggeling, L., Schneider, J., 2018. Auswirkungen der Grundwasserbeschaffenheit auf Bau und Betrieb Oberflächennaher Geothermieanlagen. In: Bauer, M., Freeden, W., Jacobi, H., Neu, T. (eds) Handbuch Oberflächennahe Geothermie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50307-2_6.

Eggeling, L., Herr, K., Goldberg, V., Siefert, D., Köhler, J., Kölbel, T., Reith, S., 2018. Anlagenmonitoring als Schlüsseltechnologie für den erfolgreichen Betrieb von Geothermiekraftwerken in Deutschland.  Teilprojekte: AP 10: Reservoircharakterisierung mittels Radionuklidanalytik, AP 11: Optimierung geothermischer Betriebsmonitoringsysteme am Beispiel von Bruchsal. Schlussbericht zum Verbundprojekt ANEMONA.

Eggeling, L., Schneider, S., Volland, S. (2017): Charakterisierung von Tiefengrundwasser zur nachhaltigen geothermischen Nutzung. bbr Leitungsbau Brunnenbau Geothermie. 3, 72-77.

Rolker, J., Schill, E., Stober, I., Schneider, J., Neumann, T., Kohl, T. (2015): Hydrochemical Characterization of a Major Central European Heat Flux Anomaly: The Bürchau Geothermal Spring System, Southern Black Forest, Germany. Geothermal Energy, 3 (1).

Schneider, J., Eggeling, L., Hesshaus, A. (2014): Analyse und Charakteristik von Tiefengrundwässern in Deutschland. In: Bauer, M., Freeden, W., Jacobi, H., Neu, T.: Handbuch Tiefe Geothermie (2014), Springer, 559-594.

Schroeder, H. and Schneider, J. (2014): Powerful Production Pumps to lift the Economy of Deep Geothermal Projects. In: Fuerst, W. and Bauernschmitt, J. (2014): Environment and Energy in Bavaria, München, 31-34. Download

Eggeling., L., Mergner, H., Schlagermann, P., Kölbel, T., 2014. Two years operation of the geothermal power plant in Bruchsal – experiences, development, and research. Deep Geothermal Days (D-GEO-D), Paris, French, 04/2014.

Eggeling, L., Sauter, M., Wiegand, B., 2014. Radiologische Monitoringsysteme geothermischer Stromerzeugungsanlagen im Oberrheingraben. Fachzeitschrift für Leitungsbau, Brunnenbau, Geothermie, Sonderheft Geothermie 2014, 80-85.

Eggeling, L., Genter, A., Kölbel, T., Münch, W., 2013. Natural radionuclides of deep geothermal fluids in the Upper Rhine Graben. Geothermics 47, 80-88. 

Eggeling L. and Schneider J. (2012): Fluid monitoring during operation. In: Dittmann E. und Schneider J. (2012): Short Course 2012 – Aspects of Geothermal Power Plants in Operation, 8-12.

Eggeling, L., Kölbel, T., Schlagermann, P. & Münch, W., 2011. Geothermische Stromerzeugung in Deutschland. CIT 83, 1834-1844.

Schneider J., Bakker R.J., Bechstaedt T. & Littke R. (2008): Fluid evolution during burial diagenesis and subsequent orogenetic uplift: the La Vid Group (Cantabrian Zone, Northern Spain). Journal of Sedimentary Research, 78, 282-300

Schneider, J., Bechstädt, T. & Machel, H. (2004): Covariance of C- and O-isotopes with magnetic susceptibility as a result of burial diagenesis of sandstones and carbonates – an example from the Lower Devonian La Vid Group, Cantabrian Zone, NW Spain.- Int. J. Earth Sc., 93 (6), 990-1007.

Schneider, J., De Wall, H., Kontny, A., & Bechstädt, T. (2004): Magnetic susceptibility variations in carbonates of the La Vid Group (Cantabrian Zone, NW-Spain) related to burial diagenesis.- Sediment. Geol., 166, 73-88.